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Single Slab Arbitrary Polarization Sutface

Wave Structure*
ROBERT C. HANSENT

Summary--A single grounded dielectric slab can support either
TM or TE modes, but cannot propagate both with the same velocity.
This paper concerns a modification of the single slab which enables
either polarization to propagate with the same velocity. Such a
structure could transmit a circularly polarized wave, and would be
useful in transmission, feeder, and antenna applications.

The structure consists of a grounded dielectric slab with parallel
metal plates imbedded in the dielectric, normal to and in contact
with the ground plane. The plates do not reach the top of the slab.
Propagation is along the plates, whereas corrugated surfaces propa-
gate across the vanes. For small plate thickness, the TE field is
undisturbed; hence, the entire slab thickness controls the velocity.
The TM field, however, has an electric field component parallel to
the plates, which is shorted out by the plates; thus, only the thickness
of slab above the plates controls this mode, and the two modes can
be independently controlled.

Since the plates are not a perfect short circuit, a boundary value
analysis is given which finds the higher mode amplitudes, and the
variation of effective short circuit with parameters. This analysis
sets up a sum of modes in each region, and then solves the resulting
sets of simultaneous transcendental equations by a contour integra-
tion-residue theory technique. The theory is illustrated by a specific
example.

INTRODUCTION
SURF ACE WAVE structures have received much

attention in the literature during an interval of

over fifty years. Most of the interest has been
centered on two structures of practical importance: the
corrugated metallic surface, and the dielectric surface,
with or without an associated ground plane.l:* An excel-
lent survey of the state of the art is given by Zucker,
with 86 references.®* Most of the surface wave antennas
are of the endfire type.? All these structures, however,
are essentially single polarization devices. The corru-
gated surfaces support only TM modes. A dielectric clad
ground plane will support either TM or TE modes, but
the propagation constants vary with the physical
parameters in different fashions. It is not possible to
design a single grounded dielectric slab to propagate

* Manuscript received by the PGMTT, August 6, 1956. The work
described in this paper was supported by the AF Cambridge Res.
Ctr., Air Res. and Dev. Command, under Contract AF19 (604)-1317,
and is an extract of Sci. Rep. No. 9, Hughes Aircraft Co., Culver City,
Calif. The paper was presented at the URSI Meeting in Washington,
D. C., May, 1956.

t Hughes Aircraft Co., Culver City, Calif.

LS. S. Attwood, “Surface wave propagation over a coated plane
conductor,” J. Appl. Phys., vol. 22, pp. 504-509; April, 1951.

> R. S. Elliott, “On the theory of corrugated plane surfaces,”
IRE TRANS., vol. AP-Z, pp. 71-81; April, 1954.

3F. J. Zucker, “The guiding and radiation of surface waves,”
Proc. of Symp. on Modern Advances in Microwave Techniques, Poly-
tech. Inst. of Brooklyn, pp. 403-435; 1954.

4 R. S. Elliott, “Pattern Shaping with Surface Wave Antennas,”
Tech. Memo. no. 360, Hughes Aircraft Co., March, 1955.

both polarizations with the same velocity. Hence the
array factors for the two polarizations differ when a
given slab is used as an antenna.

In some transmission and antenna applications it is
desirable to utilize surface wave structures with circular
polarization. Two structures which can be designed to
propagate both TM and TE surface waves with the
same velocity are the two-layered dielectric slab with
ground plane and the single-layer grounded slab with
mode filter. The latter structure is the subject of this
paper.

This structure, called the Single Slab Circular Polari-
zation Structure, consists of a single dielectric layer on a
ground plane with parallel metal plates or septa im-
bedded in the dielectric, normal to and in contact with
the ground plane. Fig. 1 is an artist’s sketch of the
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Fig. 1—Single slab arbitrary polarization structure.

structure. Note that propagation is along the vanes
while corrugated surfaces propagate a wave across the
teeth. The TE mode has an electric field across the
vanes, representing the TEM mode in a parallel plate
transmission line; for small plate thickness the effect of
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the plates is negligible and the entire slab controls the
TE surface wave mode. For the TM mode, however, a
parallel component of electric field is present. If the
plates are sufficiently close together, this parallel elec-
tric field is shorted out, and the effective thickness of
slab controlling the TM wave is nearly the thickness
ahove the septa. It is the goal of this paper to determine
the quantitative behavior of this effective thickness
with the dimensions of the structure.

SINGLE GROUNDED SLAB MODES

The analysis of TM and TE surface waves on a single
grounded dielectric (or permeable) slab is straight-
forward, and may be found in the literature.® Only the
results are given here. If the surface wave propaga-
tion constant is 8, and % =w~/pue for Iree space then the
parameters of interest are the velocity ratio 8/% and the
slab thickness k¢. The formulas are®

. B/k)*—1

tan"le; :‘:—k');
T™ ke = A Gl (1)

Ve — (B/k)?
sin—! /‘/61 — (B8/k)*
€ — 1

ke = — . 2
e V= @/ @

which give the thickness required for a slab of dielectric
constant ¢, to propagate each mode with velocity w/g.
The maximum value B/k can attain for either mode is
e A typical curve of 8/k vs slab thickness is Fig. 2
where it is seen that the TM mode is a dominant mode.

THE SINGLE SLAB ARBITRARY POLARI-
ZATION STRUCTURE

The single slab structure with septa was sketched in
Fig. 1, and is shown in cross section in Fig. 3. The major
effect of the septa is on the TM mode; thus this problem
will be attacked. Surface waves are again the desired
phenomenon; the lowest order TM mode will be as-
sumed to propagate in the z direction as exp (—j8z).
Unlike the simple case in the section above, a single
mode cannot exist either in the dielectric-air region or
in the parallel plate waveguide region. Instead, each
region has an infinite set of coupled modes, which satisfy
boundary conditions and, of course, Maxwell’s equa-
tions. Waves other than surface waves may exist on the
structure, but attention here will be limited to the sur-
face waves. The complete field in each region is written
and the tangential fields at the boundaries are matched.
This results in the usual infinite set of simultaneous

5 Robert C. Hansen, “Single Slab Circular Polarization Surface
Wave Structure,” Sci. Rep. No. 9, Hughes Aircraft Co., Feb-
ruary 14, 1956.
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Fig. 3—Single slab structure in transverse section.

equations in the unknown amplitudes and propagation
constants. A residue theory technique is then used to
solve the equations. This scheme augments the physical
understanding by making explicit approximations but
appears to be applicable only for plates of quite small
thickness. The steps will be described briefly.
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Field Equations in Three Regions

Except for the dominant TM mode, the field is com-
posed of modes, transverse magnetic with respect to y,
derived from the scalar wave solution f:

1
E = — curl curl a,/,
joe o/ 3)

H = curl a,f.

The reasons for using this type of field will be explained
later. A y-directed unit vector is symbolized by ay. Since
the parallel plate region is nonuniform in x, the higher
modes will vary in x; from this variation may be de-
duced the y variation. Surface waves with exp (—jB2)
are assumed. This assumption of a single propagation
constant for the set of modes is valid because at each
boundary the fields must match for all z. The factor
exp (—jBz) will be suppressed throughout.

In Region II the field must be periodic in x with
period a due to symmetry. The pythagorean relation
forces the higher modes to be evanescent in y. Again it
is stressed that propagation is parallel to the plates.
Thus,

2mrx
f = B, cos ~sinh (D — ymy) m2>1 (4)
a
2mm\*?
ok =g+ (07) = 0
a

The dominant mode is

E, = — (Bv/weer) B cos (D — vy)
E, = — (v*/jwee) B sin (D — vy)
H, = yBcos (D — vy) (6)

where B is again the dominant mode coefficient. A de-
vice which allows this mode to be combined with the
higher modes is that of replacing dominant mode co-
efficients by new symbols subscripted zero. Let

iB/B8 = Bo/ve, J¥ =0, Do=jD+ n/2). (7)

Three of the components, which include the dominant
mode, are

» B, 2mm\? 2mwx
Ey =2 - +5Z] cos
m=0 [JWEEL a a

sinh (D, — ymy) (8)

2mmx

1l

E,

cosh (D, — vmy) (9)

Z (B’YmBM/WEfl) COos
m a

2mmyx

H.= 2 jBB, cos sinh (D, — vmy). (10)

a

In Region I, the field must have the same x variation
as in Region II, and must decay exponentially in y be-
cause a surface wave contains its power in a region
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around the dielectric slab. Then the scalar function to
use with (3) is

2mmwx
[ = A cos m> 1 an

k2= 32+ (2mn/a)® — an’ (12)

The field is readily written from (3) and the above
scalar, plus E,=(af/jwe) exp (—ay), E.=(—d/jwe)
exp (—ay), H.=—a exp (—ay). At the dielectric-air
boundary (y=0b-¢) this field must be continuous with
the corresponding field in Region II, for all x and z.
Orthogonality in x allows individual terms to be equa-
ted. In this problem it is possible to match all the tan-
gential components only if the fields are transverse with
respect to y, although it is natural to expect the higher
modes to be derived from a z-directed Hertzian vector.
The y direction represents a virtual direction of propa-
gation. Later it will be seen that the waveguide region
needs a TM field to match the dominant mode E, in
Region I1; to match the guide field, a TM field is needed
here. At y="b-¢, matching gives two equations which
are solved to yield

Ym coth [Dm — Ym(d + 0)] = aan

so for m>1 the condition D, >v,(b=4¢) must be valid.
For m =0, the equation reduces to the analogous form
of the equation for the single slab

v tan [y(d + ¢) — D] = eio

If D were known, then this equation would allow ¥ to be
calculated.

For Region III, the parallel plate waveguide region,
the field is obtained from

exp (_amy>)

(13)

(14)

nwx

f = C,sin

cosh 8,y (15)

ek = B2 4 (um/a)? — 8,2

which gives a field, TM with respect to the y direction,
and represents waves originating at the discontinuity
(cell mouth) and traveling in the y direction. Since
veka <7, all modes are evanescent. Again the “propa-
tion” factor exp(—7jBs) has been deleted for brevity.

(16)

The Approximate Physical Situation

To make the problem amenable to attack, the septa
are assumed to be vanishingly thin. This assumption is
reasonable physically as it is desirable to construct thin
septa to avoid disturbing the TE surface wave. A
second assumption neglects the reflected evanescent
modes in the waveguide region. That is, the wave is
attenuated so greatly in traveling from the guide mouth
down to the guide end (ground plane) and back that the
portion coming back can be discarded. From the equa-
tions to be given shortly it may be ascertained that the
nth wave is attenuated by
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exp (—nwb/a)

in traversing the guide. For all practical designs, $>a
so even for #=1 the reflected wave is negligible.

The field will thus be approximated; the important
components are

=) Cn 2
E,=Y - [(fﬁ) +52] sin 2 exp (ay)  (17)
n=1 JWee; a
nrx
E, = Z — (B6.Cr/ wee;) sin exp (8.y) (18)
H,= Y j8C,sin—> exp (5.3) (19)

Next this waveguide field is matched to the field in
Region II, at the mouth of one parallel plate “cell,”
y=b. Only E,, E,, and H, need be written.

o C"
> —— (ek? + 8,%) sin

ne1 JWeey a

nwxy

eanb

2. Bnm 2mmx
= > (12 + vn?) cos sinh D, — v.b[ (20)
a

m=0 [ WeEL
—B6.C, nwy
i sin T edn?
n weey a
BYmBm 2mmwx
= Y cos cosh [D,, — vub] (21)
m Weeg a
> jBC, sin —— ¢inb
. 2mmx
= ) jBB, cos sinh [Dn — ynb). (22)
m a

These equations are the usual infinite simultaneous
equations obtained in boundary value problems. Next
multiply (22) by #?/Bwe and add it to (20) to give a new
equation which, when simplified, is

nwx

> 8,2y sin A
" a
2mwx

= D Ym?Bum cos sinh [Dm — ymb}. (23)

a

This equation and (21) will be used to obtain a solution.
The right-hand side of each may be reduced to a single
term due to the cosine orthogonality by multiplying
each equation by cos 2¢wx/a and integrating from 0 to
a. Since the resulting series in n is not uniformly con-
vergent, one may question the validity of term by term
integration. The result is, however, correct as may be
shown by a Green’s theorem argument.® The n series is
not orthogonal to cos 2¢mwx/a, and an integral formula
(Dwight 465) must be used. So (23) and (21) become

¢ E. A. N. Whitehead, “Theory of Parallel Plate Media for
Microwave Lenses,” Proc. I.E.E., vol. 98, pt. I11, pp. 133-140; 1951.
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. ©. 16,°C,, exp (8,0)
(774'Ba/2¢;) sinh (D — vgb) = 3 — ——— (24
=1 n'—4q
odd
2, —nd.Cr exp (8,0)
(7v4By/2¢;) cosh (Dy — ) = 3 —(25)

n=—1 nt — 4q
odd

with ¢, the Neumann number,’
{2 g>0
Gq =
1 g=0.

Note that for n even, C,=0. The pair of equations is
not yet in the proper form; two simple manipulations
are needed.

a\?2
Insert #n® — 4¢% = <—~> (822 — 7v¢Y)
™

and multiply the second equation by v,, and add and
subtract to the first equation of the pair with the result

(v4**By/2me,) exp (Dy — v4b)
2, 18.C, exp (8,0)

=2 ————— ¢=0,1,2,--- (26
n=1 6n + Y4
odd
('Yq?'aqu/zﬂ'eq) exp (—Dg + Veb)
—18,C,, exp (8,)
=2 - (27)

n Bn_’Yq

For ¢>0 the exp(—D,+v,b) represents an attenuated
wave, a higher order evanescent wave which is reflected
from the virtual ground plane at y=4. The amplitudes
of these higher order reflected waves are small, and they
will be neglected. Thus (27) is approximated by

(1/27‘!‘)5q0702(1230 exp (‘_‘DO + 'YOb)

> —ud,C, exp (6,0

> e
n=1 0n — Yq
odd

(28)

The two infinite sets of simultaneous equations, (26)
and (28), are a good physical approximation to the
problem and need to be solved for the coefficients B, and
C. and wave numbers §; and .. These equations will be
solved exactly by function-theoretic methods.

The Contour Integral Solution

A contour integral is written whose residues form the
terms of the series in (28). Then if the integral can be
uniquely and explicitly determined, the solution is im-
mediate. This method has been used with appreciable

?G. N. Watson, “Bessel Functions,”

Cambridge University
Press, Cambridge, Eng., p. 22; 1952,
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success by Hurd%? Whitehead,® and others.1o-12 [t is
especially valuable for problems involving a semi-
infinite region and for these cases can include one re-
flected wave on each side of the boundary. A general dis-
cussion of the function-theoretic method is given by
Karp.®

Consider a complex function f(w) which

1) has simple poles at 8,, n=1, 3, 5,

2) has simple zeros at v,, ¢g=1, 2, 3,

3) is elsewhere absolutely convergent in the strict
sense

4) tends uniformly to zero as |w|— o

5) obeys edge conditions.

Then by choosing a set of contours of increasingly large
radius, selected to avoid the poles,?

flw)dw

¢ W — %Yq n=1
odd

= beof(y0) + 2 — Ko _

n— Yq

(29)

where R(d,) is the residue of f(w) at w=34,.

If the function satisfies the above conditions, it is
unique; hence (28) can be compared directly with (29),
and it is found that

(1/27)v¢*a*By exp (— Dy -+ vob) = f(v0) (30)
186,.Crn exp (8:0) = R(5,). (31)
Similarly
f('w>d = R(8,)
o . =0 (32
¢ W+ v, /= 7)—*—7;1 T (32

odd

which when compared with the set (26) gives the same
formula for C, and in addition

(—va*By/2mey) exp (Dg — vob) = f(—v,).
Now by comparing (30) and (33) for ¢=0, a key equa-
tion is obtained:

~f(vo) = exp (—2D, + 2veb) f(—0).-

This determinantal equation relates vy, and D,.

To summarize, if the correct f{w) were known, the
mode amplitudes would be given directly by (31) and
(33) and the determinantal equation would give v, in

(33)

(34)

8 R. A. Hurd, “Propagatlon of an electromagnetic wave along an
infinite corrugated surface,” Can. J. Phys., vol. 32, pp. 727-734;
December, 1954.

'R. A, Hurd and H. Gruenberg, “H-plane bifurcation of rec-
tangular waveguide,” Cen. J. Phys., vol. 32, pp. 694~701; November,
1954,

10 7. Szekely, “Junction of Two Rectangular Waveguides,” M. S.
Thesis, Dept of Elec Eng., Univ. of Toronto; May, 1953.

U 1.. Brillouin, “Wave guxdes for slow waves,” J. Appl. Phys.,
vol 19 pp. 1023~ 1041 November, 1948.

12 F, Berz, “Reflection and refraction of microwaves at a set of
parallel metallic plates,” Proc. I.LE.E., vol. 98, pt. IIl, pp. 47-55;
1951.

13S. N. Karp, “An Application of Sturm-Liouville Theory to a
Class of Two-Part Boundary Value Problems,” Rep. BR-13, New
York Univ., New York, N. Y., August, 1955.
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terms of Dy. The next task is to construct the correct
function. To this end two infinite products which display
the needed zeros are defined.

H (w — v5)(—a/2pm) exp (aw/2pm) (35)

p=1

=TT (o = 5,)(=/p) exp (a/pe).

odd

HI(TD)

Iy(w) (36)

It will appear below that the exponential factors make
the products strictly convergent. Then if g(w) is an en-
tire function with g(vyo) =1,
Byyole? exp (—Do + ’Yob)n1(w)H2(‘YO)
2711 (o) Tao(w)

f(w) = g(w) (37)

which contains the proper zeros and poles and also
satisfies (30). The investigation of the asymptotic be-
havior of f(w) is given in reference 5 and the g(w) is de-
termined from the edge conditions in the same place.
For p>1

8y pr/a, v, 2pm/a

so that

Mi(w) =~ fI [1 — aw/2p7] exp (aw/2pr) (38)

which is absolutely convergent for all w by Example 1 in
Whittaker and Watson.!® Similarly for I'y. From Hansen,5

glw) = exp [(w — vo)a In 2/x]. (39)

The determinantal (34) can now be solved for D in
terms of o Inserting values for f(7y,) and f(—v,) and
solving for D gives the form

(= 7)T(5v)
L (jv)a(—jv)

D=~(b—0aln2/m)+ (1/2j) In (40)
where the original v is now used.

Note that no approximations were made here. Simpli-
fying the last term yields the relationship between D
and

=y —aln2/7) 4+ Z( 1)Pl:sm

=1

f:—”-— “—] (41)

p
For most cases, va/7<<1. Then
D~y — aln2/x) — (1/6)(ya/n)3

This expression is the desired relationship among D,
~, and a. Note that b is not involved due to the neglect

(42)

14 The field must be singular in the proper manner at the septa

edges.
5 E, T. Whittaker and G. N. Watson, “Modern Analysis,”

Cambridge University Press, Cambridge, Eng., p. 34, 1952.
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of evanescent reflected waves in the waveguide region.
Result (42) is inserted into (14) to give the final tran-
scendental equation determining vy. This equation is

ve tan [y(c 4+ aln 2/x) 4+ (1/6)(ya/7)?] = eac. (43)

The equation can be solved by a perturbation scheme,
first finding v without the cubic correction term, then
using this value in the complete equation and calculat-
ing a more correct . It is found that the cubic term has
negligible effect for all ya where the theory is valid. Thus
an excellent approximation to (43) is

v¢ tan y(c + a In 2/7) = eac (44)

and the “effective height” ¢* is given very simply by
c*=c+ aln2/m. (45)

An example, which will be of use later, has been chosen.
In this example ¢, =4 and k¢=0.379 which would yield
a B/k of 1.05 if the slab were placed directly on the
ground plane. Fig. 4 contains a plot of 8/ vs plate
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The effective height ¢* obtained is, except for the
cubic correction term, just that obtained from the elec-
trostatic problem of a semi-infinite capacitor. Fringing
of the field between the inner and outer plates is
equivalent® to adding a section of plate, with uniform
field, of length (a In 2/7). The virtues of the function-
theoretic approach are that it indicates exactly what
approximations are used to obtain an answer and that
the mode amplitudes can be calculated. Mode ampli-
tudes have been calculated® for the example quoted;
Table I compares the higher mode amplitudes to the

TABLE 1
AMPLITUDE RATIOS AT INTERFACE

{ Ratio at Interface | Ratio at Cell Mouths

m
1 0.032 0.208

2 0.0015 0.0780
3 0.00010 0.0435
4 0.000009 0.0284

1.6
as= w\
1.5}
2 1.4
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Fig. 4—Variation of propagation constant with septum spacing ka.

spacing for the example. When the plate spacing a be-
comes comparable with the plate height b, the evanes-
cent modes which were not accounted for in the theory
become important. This fact is observed in the graph,
as the true B/k can never exceed the value produced by
the entire slab thickness, regardless of plate spacing.
That the theory did not allow for reflected modes higher
than the first in Region II (above the plates) is an im-
portant fact because in practice b will usually be greater
than a, but ¢ will be less than a.

dominant mode amplitude at the dielectric-air interface,
and at the cell mouths. The dominant mode in the di-
electric of Region II originates at the interface and de-
cays exponentially toward the waveguide cells. On the
other hand, the higher order modes in the same region
originate at the cell mouths, where they are needed to
match the boundary conditions, and decay toward the
interface. Hence Table I indicates that the kigher modes
are insignificant at the interface but appreciadle at the cell
mouths.

CoNcLUSION

The Single Slab Arbitrary Polarization Structure is a
practical structure which should find use in surface wave
antennas and other devices. Finite spacing of the plates
lowers the effective short circuit plane by an amount
proportional to the plate spacing. This fact and the data
presented allow a structure to be designed for a desired
/% ratio. The function-theoretic technique used also
divulged the mode amplitudes in each region. In the
parallel plate guide and just above the guides appreci-
able quantities of higher modes exist. At the trapping
interface, higher order modes are negligible; thus this
structure would not degrade the performance of an
antenna.

A more precise theory will need to be cognizant of
reflected evanescent waves in the dielectric region.

8 W. R. Smythe, “Static and Dynamic Electricity,” McGraw-
Hill Book Co., Inc., New York, N. Y., p. 103, 1939. See prob. 26.
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