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Single Slab Arbitrary Polarization Surface

Wave Structure*
ROBERT C. HANSEN~

Summary—A single grounded dielectric slab can support either
TM or TE modes, but cannot propagate both with the same velocity.

This paper concerns a modification of the single slab which enables

either polarization to propagate with the same velocity. Such a

structure could transmit a circularly polarized wave, and would be

useful in transmission, feeder, and antenna applications.

The structure consists of a grounded dielectric slab with parallel

metal plates imbedded in the dielectric, normal to and in contact

with the ground plane. The plates do not reach the top of the slab.

Propagation is along the plates, whereas corrugated surfaces propa-

gate across the vanes. For small plate thickness, the TE field is

undisturbed; hence, the entire slab thickness controls the velocity.

The TM field, however, has an electric field component parallel to

the plates, which is shorted out by the plates; thus, only the thickness

of slab above the plates controls thk mode, and the two modes can

be independently controlled.

Since the plates are not a perfect short circuit, a boundary value

analysis is given which finds the higher mode amplitudes, and the

variation of effective short circuit with parameters. This analysis

sets up a sum of modes in each region, and then solves the resulting

sets of simultaneous transcendental equations by a contour integra-

tion-residue theory technique. The theory is illustrated by a specific

example.

INTRODUCTION

~

U RFACE WAVE structures have received much

\ attention in the literature during an interval of

- over fifty years. Most of the interest has been

centered on two structures of practical importance: the

corrugated metallic surface, and the dielectric surface,-.
with or without an associated ground plane.1 ~zAn excel-

lent survey of the state of the art is given by Zucker,

with 86 references.3 Most of the surface wave antennas

are of the endfire type .4 Ail these structures, however,

are essentially single polarization devices. The corru-

gated surfaces support only TM modes. A dielectric clad

ground plane will support either TM or TE modes, but

the propagation constants vary with the physical

para~leters- in different fashions._ It is not po&ible to

design a single grounded dielectric slab to propagate

* Manuscript received by the PGMTT, August 6, 1956. The work
described in this paper was supported by the AF Cambridge Res.
Ctr., Air Res. and Dev. Command, under Contract AF19 (604)-1317,
and is an extract of Sci. Rep. No. 9, Hughes Akcraft C?., Culv:r City,
Calif. The paper was presented at the URSI Meeting m Washington,
D. C., May, 1956.
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both polarizations with the same velocity. Hence the

array factors for the two polarizations differ when a

given slab is used as an antenna.

In some transmission and antenna applications it is

desirable to utilize surface wave structures with circular

polarization. Two structures which can be designed to

propagate both TM and TE surface waves with the

same velocity are the two-layered dielectric slab with

ground plane and the single-layer grounded slab with

mode filter. The latter structure is the subject of this

paper.

This structure, called the Single Slab Circular Polari-

zation Structure, consists of a single dielectric layer on a

ground plane with parallel metal plates or Septa im-

bedded in the dielectric, normal to and in contact with

the ground plane. Fig. 1 is an artist’s sketch of the

structure. Note that propagation is along the vanes

while corrugated surfaces propagate a wave across the

teeth. The TE mode has an electric field across the

vanes, representing the TEM mode in a parallel plate

transmission line; for small plate thickness the effect of
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the plates is negligible and the entire slab controls the

TE surface wave mode. For the TM mode, however, a

parallel component of electric field is present. If the

plates are sufficiently close together, this parallel elec-

tric field is shorted out, and the effective thickness of

slab controlling the TM wave is nearly the thickness

above the septa. It is the goal of this paper to determine

the quantitative behavior of this effective thickness

with the dimensions of the structure.

SINGLE GROUNDED SLAB MODES

The analysis of TM and TE surface waves on a single

grounded dielectric (or permeable) slab is straight-

forward, and may be found in the literature.F Only the

results are given here. If the surface wave propaga-

tion constant is ~, and k = o<= for free space then the

parameters of interest are the velocity ratio ,8/k and the

slab thickness kc. The formulas are5

l(fl/k)2 – 1

(1)
vtan–l El ~~~ ,

TM kc =
61 — (p/k) 2

<q – (~/k)2

d

C1 — (~/k)z
sin–l

TE
Cl—1

kc =
<,, – (@/k)’ “

(2)

which give the thickness required for a slab of dielectric

constant q, to propagate each mode with velocity w/13.

The maximum value ~/k can attain for either mode is

ti~. A typical curve of (3/k vs slab thickness is Fig. 2

where it is seen that the TM mode is a dominant mode.

THE SINGLE SLAB ARBITRARY POLARI-

ZATION STRUCTURE

The single slab structure with septa was sketched in

Fig. 1, and is shown in cross section in Fig. 3. The major

effect of the septa is on the TM mode; thus this problem

will be attacked. Surface waves are again the desired

phenomenon; the lowest order TM mode will be as-

sumed to propagate in the z direction as exp ( –j~z).

Unlike the simple case in the section above, a single

mode cannot exist either in the dielectric-air region or

in the parallel plate waveguide region. Instead, each
region has an infinite set of coupled modes, which satisfy

boundary conditions and, of course, Maxwell’s equa-

tions. Waves other than surface waves may exist on the

structure, but attention here will be limited to the sur-

face waves. The complete field in each region is written

and the tangential fields at the boundaries are matched.

This results in the usual infinite set of simultaneous

6 Robert C. Hansen, “Single Slab Circular Polarization Surface
Wave Structure, ” Sci. Rep. No. 9, Hughes Aircraft Co., Feb-
ruary 14, 1956.
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Fig. 3—Single slab structure in trans~erse section.

equations in the unknown amplitudes and propagation

constants. A residue theory technique is then used to

solve the equations. This scheme augments the physical

understanding by making explicit approximations but

appears to be applicable only for plates of quite small

thickness. The steps will be described briefly.
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Field Equations in Th~ee Regions

Except for the dominant TM mode, the field is com-

posed of modes, transverse magnetic with respect toy,

derived from the scalar wave solution j:

E = ~ curl curl auf,

ywe (3)

H = curl auf.

The reasons for using this type of field will be explained

later. A y-directed unit vector is symbolized by au. Since

the parallel plate region is nonuniform in x, the higher

modes will vary in x; from this variation may be de-

duced the y variation. Surface waves with exp ( –j~z)

are assumed. This assumption of a single propagation

constant for the set of modes is valid because at each

boundary the fields must match for all z. The factor

exp ( -–jflz) will be suppressed throughout.

In Region 11 the field must be periodic in x with

period a due to symmetry. The pythagorean relation

forces the higher modes to be evanescent in y. Again it

is stressed that propagation is parallel to the plates.

Thus,

2m7rx
f = B. COS —- sinh (Dm

a

2m~ z

()
qk2 = f12 + — — Y???z.

a

The dominant mode is

E. = – (~y/wl) B COS

E, = — (y2/jOJe.q) B sin

~. = ~B COS (D – ~y)

– ‘ymy) m 21 (4)

(5)

(D – ~y)

(D – yy)

(6)

where B is again the dominant mode coefficient. A de-

vice which allows this mode to be combined with the

higher modes is that of replacing dominant mode co-

efficients by new symbols subscripted zero. Let

jB/8 = Bo/Yo, jy = 70, Do = j(D + T/2). (7)

Three of the components, which include the dominant

mode, are

‘=zi.ix3+’21c0s?
~m~ x

E. = ~ (&y. B,,L/we61) Cos — cosh (D~ – ‘Y~Y) (9)
m a

2m7rx
Hz = ~ jBBm COS — sinh (D~ — y~y). (lo)

. a

In Region 1, the field must have the same x variation

as in Region II, and must decay exponentially in y be-

cause a surface wave contains its power in a region

around the dielectric slab. Then the scalar function to

use with (3) is

2m7rx
f= A.cos — exp (—a. y), m > 1 (11)

a

kz = ~i + (2mr/a)2 – a~p. (12)

The field is readily written from (3) and the above

scalar, plus E.= (a@/jQx) exp (– ay), E.= ( –cd/jwe)

exp ( — ay), H.= — a exp ( — ay). At the dielectric-air

boundary (y= b +G) this field must be continuous with

the corresponding field in Region II, for all x and z.

Orthogonality in x allows individual terms to be equa-

ted. In this problem it is possible to match all the tan-

gential components only if the fields are transverse with

respect to y, although it is natural to expect the higher

modes to be derived from a z-directed Her tzian vector.

The y direction represents a virtual direction of propa-

gation. Later it will be seen that the waveguide region

needs a TM field to match the dominant mode .Ev in

Region II; to match the guide field, a TN! field is needed

here. At y = b +c, matching gives two equations which

are solved to yield

~n coth [Dn — ~~(b + c)] = eIa. (13)

so for m> 1 the condition D~ >~n(b+c) must be valid,

For m = O, the equation reduces to the analogous form

of the equation for the single slab

~ tan [~(b + c) – D] = elm (14)

If D were known, then this equation would allow ~ to be

calculated.

For Region II 1, the parallel plate wa.veguide region,

the field is obtained from

)lZ-X
j_= Cmsin — cosh &,y

a
(15)

elk z = p’ + (nr/a)’ – 3.’ (16)

which gives a field, TM with respect to the y direction,

and represents waves originating at the discontinuity

(cell mouth) and traveling in the y direction. Since

~;lka < T, all modes are evanescent. Again the ‘(proba-

tion” factor exp( —j~z) has been deleted for brevity.

Tke .4 pproximute Physical Situation

To make the problem amenable to attack, the septa

are assumed to be vanishingly thin. This a.ssumpt ion is

reasonable physically as it is desirable to construct thin

septa to avoid disturbing the TE surface wave. A

second assumption neglects the reflected evanescent

modes in the waveguide region. That is, the wave is

attenuated so greatly in traveling from the guide mouth

down to the guide end (ground plane) and back that the

portion coming back can be discarded. From the equa-

tions to be given shortly it may be ascertained that the

nth wave is attenuated by
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exp (– mrb/a)

in traversing the guide. For all practical designs, b > a

so even for n = 1 the reflected wave is negligible.

The field will thus be approximated; the important

components are

‘=:,s[(:)2+’21s in5exp(’y) ’17)

wrx
E. = ~ – (&&CJweeJ sin — exp (&y) (18)

n a

!mrx
Hz = ~ j~C. sin — exp (&y) (19)

?2 a

Next this waveguide field is matched to the field in

Region 11, at the mouth of one parallel plate “cell, ”

Y = b. Only E~, E,, and Hz need be written.

25 (elk’ + ~.’) sin U e’.’
n=l jweel a

= S & (elk’+ ‘y~’) cos = sinh LD~ – ~.bj (20)
~=o jw6E~ a

z
–pancn ‘F14rx

sin ————e&b

n Wq a

=x

&ymB. 2m~x
— co’ — cosh [D~ – ~nbj (21)

m Weel a

~ j~Cm sin z e&b

9) a

= ~ ~PB. cos = sinh [D. – ~~bj. (22)
m a

These equations are the usual infinite simultaneous

equations obtained in boundary value problems. Next

multiply (22) by k2/&x and add it to (20) to give a new

equation which, when simplified, is

~ 6.’6 sin = e’mb
n

= ~a~.2Bm cos m sinh [D. – -ymbj. (23)
. a

This equation and (21) will be used to obtain a solution.

The right-hand side of each may be reduced to a single

term due to the cosine orthogonality by multiplying

each equation by cos 2q~x/a and integrating from O to

a. Since the resulting series in n is not uniformly con-

vergent, one may question the validity of term by term

integration. The result is, however, correct as may be

shown by a Green’s theorem arguments The n series is

not orthogonal to cos 2qm/a, and an integral formula

(Dwight 465) must be used. So (23) and (21) become

t E. A. N. Whitehead, ‘Theory of Parallel Plate Media for
Microwave Lenses,” P70c. I. E. E., vol. 98, pt. III, pp. 133-140; 1951.

(ryJBJ2.GJ sinh (D, – yqb) = ~
n,=1
odd

(7r7J3Q/2eQ) cosh (D, – ~,b) = ~
Z=l
odd

with Cg the Neumann number,l

{

2 q>o

% =
1 q=o.

Note that for n even, C.= O. The pair of equations is

not yet in the proper form; two simple manipulations

are needed.

()Insert nz – 4q2 = ~ 2(&2 – ~q2)

‘r

and multiply the second equation by TQ, and add and

subtract to the first equation of the pair with the result

(7,2a2W%) exp (D, – -i*b)

= 5 ‘Zsn:~:”b)g=o, 1,2, . . . (26)
n=l n

For g >0 the exp( – D, +yqb) represents an attenuated

wave, a higher order evanescent wave which is reflected

from the virtual ground plane at y= b. The amplitudes

of these higher order reflected waves are small, and they

will be neglected. Thus (27) is approximated by

(1/2r)8qoyo2a2Bo exp (–Do + ~,b)

=5 —nL$nCnexp (6.b)

an – ‘yq
q = 0,1, 2,.... (28)

n=l
odd

The two infinite sets of simultaneous equations, (26)

and (28), are a good physical approximation to the

problem and need to be solved for the coefficients Bq and

C. and wave numbers 6, and YO. These equations will be

solved exactly by function-theoretic methods.

The Contour Integral Solution

A contour integral is written whose residues form the

terms of the series in (28). Then if the integral can be

uniquely and explicitly determined, the solution is im-

mediate. This method has been used with appreciable

7 G. N. Watson, “Bessel Functions, ” Cambridge University
Press, Cambridge, Eng., p. 22; 1952.
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success by Hurds,g Whitehead,G and others. 10–12 It is

especially valuable for problems involving a semi-

infinite region and for these cases can include one re-

flected wave on each side of the boundary. A general dis-

cussion of the function-theoretic method is given by

Karp. 18

Consider a complex function ~(w) which

1) has simple poles at 6., n=l, 3, 5, . . 0

2) has simple zeros at -fg, q=l, 2, 3, 0 . 0

3) is elsewhere absolutely convergent in the strict

sense

4) tends uniformly to zero as I WII ~ m

5) obeys edge conditions.

Then by choosing a set of contours of increasingly large

radius, selected to avoid the poles, 10

odd

where R(8n) is the residue off(w) at w =cl..

If the function satisfies the above conditions, it is

unique; hence (28) can be compared directly with (29),

and it is found that

(1/2~)yo’a’Bo exp (–DO + ~ob) = f (~o) (30)

m$nCn exp (8J) = R(8J. (31)

.%milarl y

s

f (w)dw
= f(–7J + ~: ~R:n:*= O (32)

c’ w+Yg n
odd

which when compared with the set (26) gives the same

formula for C. and in addition

( –~Q’a’~Q/2~~Q) exp (D, – FYg~) = f(–7J. (33)

Now by comparing (30) and (33) for q = O, a key equa-

tion is obtained:

–f(yo) = exp (– 2D0 + 2YOb)f(–YJ. (34)

This determinantal equation relates To and Do.

To summarize, if the correct j(w) were known, the

mode amplitudes would be given directly by (31) and

(.33) and the determinantal equation would give To in

8 R. A. Hurd, “Propagation of an electromagnetic wave along an
infinite corrugated surface,” Can. J. Phys., vol. 32, pp. 727-734;
December, 1954.

g R. A. Hurd and H. Gruenberg, “H-plane bifurcation of rec-
~9:dar waveguide,” Can. J. Phys., vol. 32, pp. 694–701; November,

10”z. sz&elY, ‘(Junction of Two Rectangular Waveguides, ” M. S.

Thesis, Dept of Elec. Eng., Univ. of Toronto; May, 1953.
11L. Brillouin, ‘{Wave guides for slow waves, ” J. A@@l.Pkys.,

vol. 19, PP. 1023-1041;. November, 1948.
12F. Berz, “Reflection and refraction of microwaves at a set of

parallel metallic plates, ” PYOC. I. E. E., vol. 98, pt. III, pp. 47–55;
1951.

13S. N. Karp, ‘(An Application of Sturm-Liouville Theory to a
Class of Two-Part Boundary Value Problems, ” Rep. BR-13, New
York Univ., New York, N. Y., August, 1955.

terms of Do. The next task is to construct the correct

function. To this end two infinite products which display

the needed zeros are defined.

HI(w) = B (w – 7p)(–a/2@) exp (aw/2@r) (3S)
*=1

If2(w) = fi (w – 8p)(–a/@r) exp (aw/@r). (36)
SJ= ]

odd

It will appear below that the exponential factors make

the products strictly convergent. Then if g(w) is an en.

tire function with g(yo) == 1,

Boyo’a2 exp (–Do + IJot7)111(w)112 (To)
f(w) = g(w)

2frrI,(’yJII,( w)
— (37)

which contains the proper zeros and poles and also

satisfies (30). The investigation of the asymptotic be.

havior off(w) is given in reference 5 and the g(w) is de-

termined from the edge conditions14 in the same place.

For~>l

so that

III(w) R R [1 – aw/2jm] exp (aw/2@r) (38)
p=l

,
which is absolutely convergent for all w by Example 1 in

Whittaker and Watson. 15Similarly for I’z. From Han sen,s

g(w) = exp [(w – ~o)a In 2/r]. (39)

The determinantal (34) can now be solved for D in

terms of YO. Inserting values for f(yo) and f( –~oj and

solving for D gives the form

D = y(b – aln 2/~) + (1/2j) in ~y~% (40)

where the original y is now used.

Note that no approximations were made here. Simpli-

fying the last term yields the relationship between D

and

[ 1
D = ~(b – aln 2/~) + ~(–l)P sin–l -afl–– ~ . (41)

~=1 p7r p7r

For most cases, 7a/~<<1. Then

D = T(6 – a In 2/m) – (1/6) (~a/~j3. (42)

This expression is the desired relationship among D,

y, and a. Note that h is not involved due tcl the neglect

14The field must be singular in the proper manner at the =Pta

edges.
1SE. T. Whit taker and G+ N. wat~on, ‘(Modern Analysis,’)

Cambridge University Press, Cambridge, Eng., p. 34, 1952.
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of evanescent reflected waves in the waveguide region.

Result (42) is inserted into (14) to give the final tran-

scendental equation determining -I. This equation is

~c tan [7(c + a in 2/7r) + (1/6) (7a/T)3] = Clac. (43)

The equation can be solved by a perturbation scheme,

first finding ~ without the cubic correction term, then

using this value in the complete equation and calculat-

ing a more correct y. It is found that the cubic term has

negligible effect for all ~a where the theory is valid. Thus

an excellent approximation to (43) is

YC tan 7(c + a in 2/7r) = Clac (44)

and the “effective height” C* is given very simply by

c*=c+aln2/3r. (45)

An example, which will be of use later, has been chosen.

In this example e,= 4 and kc= 0.379 which would yield

a /?/k of 1.05 if the slab were placed directly on the

ground plane. Fig. 4 contains a plot of ~/k vs plate
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Fig. 4—Variation of propagation constant with septum spacing ka.

spacing for the example. When the plate spacing a be-

comes comparable with the plate height b, the evanes-

cent modes which were not accounted for in the theory

become important. This fact is observed in the graph,

as the true ~/k can never exceed the value produced by

the entire slab thickness, regardless of plate spacing.

That the theory did not allow for reflected modes higher

than the first in Region II (above the plates) is an im-

portant fact because in practice b will usually be greater

than a, but c will be less than a.

The effective height C* obtained is, except for the

cubic correction term, just that obtained from the elec-

trostatic problem of a semi-infinite capacitor. Fringing

of the field between the inner and outer plates is

equivalentlG to adding a section of plate, with uniform

field, of length (a In 2/m). The virtues of the function-

theoretic approach are that it indicates exactly what

approximations are used to obtain an answer and that

the mode amplitudes can be calculated. Mode ampli-

tudes have been calcuIated5 for the example quoted;

Table I compares the higher mode amplitudes to the

TABLE I

AMPLITUDE RATIOS AT INTERFACE

Ratio at Interface Ratio at Cell Mouths

m
1 0.032 0.208

0.0015
:

0.0780
0.00010 0.0435

4 0.000009 0.0284
)

dominant mode amplitude at the dielectric-air interface,

and at the cell mouths. The dominant mode in the di-

electric of Region II originates at the interface and de-

cays exponentially toward the waveguide cells, On the

other hand, the higher order modes in the same region

originate at the cell mouths, where they are needed to

match the boundary conditions, and decay toward the

interface. Hence Table I indicates that the Izig?zer modes

are insignificant at the interface but appreciable at the cell

mouths.

CONCLUSION

The Single Slab Arbitrary Polarization Structure is a

practical structure which should find use in surface wave

antennas and other devices. Finite spacing of the plates

lowers the effective short circuit plane by an amount

proportional to the plate spacing. This fact and the data

presented allow a structure to be designed for a desired

@/k ratio. The function-theoretic technique used also

divulged the mode amplitudes in each region. In the

parallel plate guide and just above the guides appreci-

able quantities of higher modes exist. At the trapping

interface, higher order modes are negligible; thus this

structure would not degrade the performance of an

antenna.

A more precise theory will need to be cognizant of

reflected evanescent waves in the dielectric region.

16W. R. Smythe, “Static and Dynamic Electricity, ” McGraw-
Hill Book Co., Inc., New York, N. Y., p. 103, 1939. See prob. 26.


